Dominating Induced Matchings of Finite Graphs and Regularity of Edge Ideals

نویسندگان

  • TAKAYUKI HIBI
  • AKIHIRO HIGASHITANI
  • KYOUKO KIMURA
  • AKIYOSHI TSUCHIYA
چکیده

The regularity of an edge ideal of a finite simple graph G is at least the induced matching number of G and is at most the minimum matching number of G. If G possesses a dominating induced matching, i.e., an induced matching which forms a maximal matching, then the induced matching number of G is equal to the minimum matching number of G. In the present paper, from viewpoints of both combinatorics and commutative algebra, finite simple graphs with dominating induced matchings will be mainly studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Regularity of second power of edge ideals

Let G be a graph with edge ideal I(G). Benerjee and Nevo proved that for every graph G, the inequality reg(I(G)2)≤reg(I(G))+2 holds. We provide an alternative proof for this result.

متن کامل

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014